
Intersection cuts meet submodularity

Liding Xu
Joint with Leo Liberti

OptimiX, LIX, École Polytechnique

March 1, 2023

1 / 21

Intersection cuts

The goal of intersection cuts: convexify a hard non-convex set S.
Useful for LP-based global optimization solvers.

2 / 21

History

The history in discrete and continuous optimization:

▶ Continuous programs (Hoang 1964): S is the hypograph of a
convex function (maximization of a convex function!);

▶ Integer programs (Balas 1971): S is a lattice.

3 / 21

Submodular functions

Submodular functions: discrete convex functions defined on
Boolean hypercube.

▶ Let f : {0, 1}n → R be a submodular function, define
S := {(x , t) ∈ {0, 1}n × R : f (x) ≥ t} the hypograph of f ;

▶ Maximization problem (NP-hard):
maxx∈{0,1}n f (x) = max(x ,t)∈conv(S) t.

4 / 21

Outline of this talk

▶ Construction of S-free sets and their maximality;

▶ Separation of intersection cuts;

▶ Generalization and Boolean multilinear (quadratic)
constraints;

▶ Applications and testing;

▶ Open problems and future direction.

5 / 21

S-free sets

▶ S-free set: a convex set C such that inter(C) ∩ S = ∅.

6 / 21

S-free sets: construction 1

Lifting.

Theorem
Let H be a maximal {0, 1}n-free set, then H× R is a maximal
S-free set.

Remarks:

▶ Proof similar to mixed-lattice set;

▶ Examples: H = {x ∈ Rn : 0 ≤ x ≤ 1} defined by a split.

7 / 21

S-free sets: construction 2

Construct the Lovász extension of f on [0, 1]n, and further extend
it to a continuous function f̄ on Rn.

Lemma
For all x ∈ {0, 1}n, f̄ (x) = f (x) and f̄ : Rn → R is a (continuous)
polyhedral convex function.

8 / 21

S-free sets: construction 2 (cont.)

Facts: Linear components of f̄ ≡ facets of epi(f̄) ≡ permutations
on {1, · · · , n} ≡ chains in {0, 1}n.

Theorem
conv(epi(f)) = epi(f̄) ∩ ([0, 1]n × R).
Remarks:

▶ Proof based on polymatroid [Atamtürk et al. 2022].

▶ Separation of epi(f̄): Strongly polynomial time.

9 / 21

S-free sets: construction 2 (cont.)

Theorem
The epigraph epi(f̄) of f̄ is a (non-maximal) S-free set.

10 / 21

Why not maximal?

Theorem
Let C include epi(f̄), C is a maximal S-free set if the following two
conditions are satsified:

▶ each of its facets contains a point (x , f (x)) (x ∈ {0, 1}n) in
its relative interior;

▶ The boundary of S contains all points (x , f (x)) (x ∈ {0, 1}n).

Remark: Proof similar to lattice set.

11 / 21

A counter example

n = 3, 6 = 3! permutations/chains/facets, and 8 = 23 points of
(x , f (x)).

Figure: {0, 1}3

3 facets (each facet supported by 4 points) are enough:

((0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)) ,

((0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1)) ,

((0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1)) .

Dropping remaining facets from epi(f̄) = enlarging epi(f̄).
12 / 21

Cut separation

▶ Reduction 1: The computation of one coefficient of
intersection cut is reduced to a line search problem: from an
interior point of epi(f̄), find the intersection point along a ray
to the border of the polyhedron;

▶ Reduction 2: Equivalent to finding the zero point of a
univariate piece-wise linear convex function.

(a) Line search (b) 1-D zero finding

13 / 21

Zero finding

▶ Previous results [Chmiela et al. 2022, Xu et al. 2022] are
based on binary search.

▶ New discrete Newton algorithm similar to [Iwata et al. 2008].

▶ Newton algorithm requires gradient information.

▶ Separation of epi(f̄) in a polynomial time implies that
gradients can be computed in a polynomial time.

14 / 21

Generalization to submodular-supermodular functions

Consider S := {(x , t) ∈ {0, 1}n × R : f1(x)− f2(x) ≥ ℓt}, with
ℓ ∈ {0, 1}, f1, f2 being submodular.

Theorem
Let f̄1, f̄2 be the continuous extensions of f1, f2 on Rn, then
{(x , t) ∈ Rn × R : f̄1(x)− f̄2(x

′)−∇f̄2(x
′)(x − x ′) ≤ ℓt} is S-free.

Key idea: Construct the ‘best’ submodular over-estimator of the
submodular-supermodular function.

15 / 21

Boolean multilinear constraint

Theorem
Given a Boolean multilinear function f : {0, 1}n → R defined as
f (x) :=

∑
k∈[K] ak

∏
j∈Ak

xj (for index sets Ak ⊆ {1, · · · , n}) with
K multilinear terms, let f = f1 − f2 where f1(x) :=

∑
k∈[K]
ak<0

ak
∏

j∈Ak

xj

and f2(x) := −
∑
k∈[K]
ak>0

ak
∏

j∈Ak

xj . Then f1, f2 are submodular on

{0, 1}n.
Remark: Apply the previous theorem to the Boolean multilinear
constraint f (x) ≥ ℓt.

16 / 21

Implementation and test

More insights come from coding and experiments:

▶ Implementation in SCIP 8.0.

▶ Result 1: Maximal S-free sets does not imply practically good
cuts;

▶ Result 2: Performance difference between problems with
natural MILP and MINLP formulations, monotone and
non-monotone.

17 / 21

Problem zoo

Monotone submodular maximization usually has a cardinality or
knapsack constraint.

▶ Max cut with positive weights: non-monotone submodular
maximization, natural MILP formulation.

▶ Exponential utility function maximization: monotone
submodular maximization, natural convex MINLP formulation
(too easy for SCIP).

▶ D-optimal design: submodular maximization, natural convex
MISDP/MICP formulation (not useful).

▶ MUBO: submodular-supermodular maximization.

18 / 21

Max cut

30 “g05” and 30 “pw” instances with nonnegative weights from
Biq Mac.

Configuration
Default Submodular cut Split cut

closed time closed relative time cuts closed relative time cuts

standalone 0.04 5.13 0.16 4.40 85.40 207.59 0.12 2.93 17.92 92.53
embedded 0.22 12.62 0.27 1.22 104.02 70.68 0.27 1.22 34.62 45.15

Table: Summary of max cut results

19 / 21

Multilinear unconstrained Boolean optimization

44 “autocorr bern” MUBO instances from MINLPLib.

Configuration
Default Submodular cut Split cut

closed time closed relative time cuts closed relative time cuts

standalone 0.01 9.49 0.05 4.81 43.54 43.17 0.03 2.31 14.64 20.94
embedded 0.105 22.52 0.11 1.13 49.61 13.80 0.106 1.01 25.58 28.21

Table: Summary of pseudo boolean maximization results

20 / 21

Open problems and future

▶ Enlarging S-free set;

▶ Is the discrete Newton algorithm strongly polynomial time?
(unbounded test) [Goemans et al, 2017];

▶ Natural extension to submodular functions over integer lattice
(integer quadratic/multilinear constraint);

▶ Monoid strengthening of intersection cuts similar for
quadratic-constraint [Chmiela et al. 2022].

▶ Using the submodular overestimator for the
submodular-supermodular function: better approximation
algorithm? DC programming?

21 / 21

